Wzory do obliczania masy cząsteczki, przykład problemu

Spisu treści:

Wzory do obliczania masy cząsteczki, przykład problemu
Wzory do obliczania masy cząsteczki, przykład problemu
Anonim

Każda osoba wie, że ciała wokół nas składają się z atomów i cząsteczek. Mają różne kształty i struktury. Przy rozwiązywaniu problemów z chemii i fizyki często konieczne jest wyznaczenie masy cząsteczki. Rozważ w tym artykule kilka teoretycznych metod rozwiązania tego problemu.

Informacje ogólne

Zanim zaczniesz rozważać, jak znaleźć masę cząsteczki, powinieneś zapoznać się z samą koncepcją. Oto kilka przykładów.

Cząsteczka jest zwykle nazywana zbiorem atomów, które są połączone ze sobą takim lub innym rodzajem wiązania chemicznego. Ponadto powinny i mogą być rozpatrywane jako całość w różnych procesach fizycznych i chemicznych. Wiązania te mogą być jonowe, kowalencyjne, metaliczne lub van der Waalsa.

Dobrze znana cząsteczka wody ma wzór chemiczny H2O. Znajdujący się w nim atom tlenu jest połączony polarnymi wiązaniami kowalencyjnymi z dwoma atomami wodoru. Ta struktura określa wiele fizycznych i chemicznych właściwości ciekłej wody, lodu i pary.

Men z gazu ziemnego to kolejny jasny przedstawiciel substancji molekularnej. Tworzą się jego cząsteczkiatom węgla i cztery atomy wodoru (CH4). W przestrzeni molekuły mają kształt czworościanu z węglem w środku.

Makieta cząsteczki metanu
Makieta cząsteczki metanu

Powietrze jest złożoną mieszaniną gazów, która składa się głównie z cząsteczek tlenu O2 i azotu N2. Oba typy są połączone silnymi podwójnymi i potrójnymi wiązaniami kowalencyjnymi niepolarnymi, co czyni je wysoce obojętnymi chemicznie.

Określanie masy cząsteczki poprzez jej masę molową

Układ okresowy pierwiastków chemicznych zawiera dużą ilość informacji, wśród których znajdują się jednostki masy atomowej (amu). Na przykład atom wodoru ma amu 1, a atom tlenu 16. Każda z tych liczb wskazuje masę w gramach, jaką będzie mieć układ zawierający 1 mol atomów odpowiedniego pierwiastka. Przypomnijmy, że jednostką miary ilości substancji 1 mol jest liczba cząstek w układzie, odpowiadająca liczbie Avogadro NA, jest ona równa 6,0210 23.

Rozważając cząsteczkę, używają pojęcia nie amu, ale masy cząsteczkowej. Ta ostatnia to prosta suma a.m.u. dla atomów tworzących cząsteczkę. Na przykład masa molowa dla H2O wynosiłaby 18 g/mol, a dla O2 32 g/mol. Mając ogólną koncepcję, możesz przystąpić do obliczeń.

Masa molowa M jest łatwa w użyciu do obliczenia masy cząsteczki m1. Aby to zrobić, użyj prostej formuły:

m1=M/NA.

W niektórych zadaniachmożna podać masę układu m i ilość zawartej w nim materii n. W tym przypadku masę jednej cząsteczki oblicza się w następujący sposób:

m1=m/(nNA).

Gaz idealny

Idealne cząsteczki gazu
Idealne cząsteczki gazu

Ten koncept nazywa się takim gazem, którego cząsteczki losowo poruszają się w różnych kierunkach z dużą prędkością, nie oddziałują ze sobą. Odległości między nimi znacznie przekraczają ich własne rozmiary. Dla takiego modelu prawdziwe jest następujące wyrażenie:

PV=nRT.

Nazywa się to prawem Mendelejewa-Clapeyrona. Jak widać, równanie łączy ciśnienie P, objętość V, temperaturę bezwzględną T i ilość substancji n. We wzorze R jest stałą gazową, liczbowo równą 8,314. Zapisane prawo nazywa się uniwersalnym, ponieważ nie zależy od składu chemicznego układu.

Jeżeli znane są trzy parametry termodynamiczne - T, P, V i wartość m układu, to masa idealnej cząsteczki gazu m1nie jest trudna do wyznaczenia według następującego wzoru:

m1=mRT/(NAPV).

Wyrażenie to można również zapisać jako gęstość gazu ρ i stałą Boltzmanna kB:

m1=ρkBT/P.

Przykładowy problem

Wiadomo, że gęstość niektórych gazów wynosi 1,225 kg/m3przy ciśnieniu atmosferycznym 101325 Pa i temperaturze 15 oC. Jaka jest masa cząsteczki? O jakim gazie mówisz?

Ponieważ mamy dane ciśnienie, gęstość i temperaturęsystemu, możesz użyć wzoru otrzymanego w poprzednim akapicie, aby określić masę jednej cząsteczki. Mamy:

m1=ρkBT/P;

m1 =1, 2251, 3810-23288, 15/101325=4, 807 10-26 kg.

Aby odpowiedzieć na drugie pytanie problemu, znajdźmy masę molową M gazu:

M=m1NA;

M=4,80710-266,021023=0,029 kg/mol.

cząsteczki powietrza
cząsteczki powietrza

Uzyskana wartość masy molowej odpowiada gazowi powietrza.

Zalecana: