Świetny matematyk Euler Leonhard: osiągnięcia w matematyce, ciekawostki, krótka biografia

Spisu treści:

Świetny matematyk Euler Leonhard: osiągnięcia w matematyce, ciekawostki, krótka biografia
Świetny matematyk Euler Leonhard: osiągnięcia w matematyce, ciekawostki, krótka biografia
Anonim

Leonhard Euler to szwajcarski matematyk i fizyk, jeden z twórców czystej matematyki. Nie tylko wniósł fundamentalny i kształtujący wkład w geometrię, rachunek różniczkowy, mechanikę i teorię liczb, ale także opracował metody rozwiązywania problemów w astronomii obserwacyjnej i matematyce stosowanej w inżynierii i sprawach społecznych.

Euler (matematyk): krótka biografia

Leonhard Euler urodził się 15 kwietnia 1707 roku. Był pierworodnym Paulusa Eulera i Margaret Brucker. Ojciec pochodził ze skromnej rodziny rzemieślników, a przodkami Margaret Brooker było wielu znanych naukowców. Paulus Euler pełnił wówczas funkcję wikariusza w kościele św. Jakuba. Będąc teologiem, ojciec Leonarda interesował się matematyką i przez pierwsze dwa lata studiów na uniwersytecie uczęszczał na kursy słynnego Jakuba Bernoulliego. Około półtora roku po urodzeniu syna rodzina przeniosła się do Riehen, na przedmieściach Bazylei, gdzie Paulus Euler został proboszczem miejscowej parafii. Tam sumiennie i wiernie służył do końca swoich dni.

Rodzina mieszkała w ciasnych warunkach,zwłaszcza po urodzeniu drugiego dziecka, Anny Marii, w 1708 roku. Para będzie miała jeszcze dwoje dzieci - Marię Magdalenę i Johanna Heinricha.

Leonard otrzymał pierwsze lekcje matematyki w domu od swojego ojca. W wieku około ośmiu lat został wysłany do szkoły łacińskiej w Bazylei, gdzie mieszkał w domu swojej babci ze strony matki. Aby zrekompensować ówczesną niską jakość edukacji szkolnej, mój ojciec zatrudnił prywatnego korepetytora, młodego teologa o nazwisku Johannes Burckhardt, który był namiętnym miłośnikiem matematyki.

W październiku 1720, w wieku 13 lat, Leonard wstąpił na Wydział Filozoficzny na Uniwersytecie w Bazylei (w tamtym czasie powszechna praktyka), gdzie uczęszczał na zajęcia wprowadzające z matematyki elementarnej prowadzone przez Johanna Bernoulliego, młodszego brata Jakuba, który zmarł w tym czasie.

Młody Euler podjął naukę z takim zapałem, że wkrótce zwrócił na siebie uwagę nauczyciela, który zachęcał go do studiowania trudniejszych książek własnego autorstwa, a nawet oferował pomoc w nauce w soboty. W 1723 roku Leonard ukończył edukację uzyskując stopień magistra i wygłosił publiczny wykład po łacinie, w którym porównał system Kartezjusza z filozofią przyrody Newtona.

Zgodnie z życzeniem rodziców wstąpił na wydział teologiczny, poświęcając jednak większość czasu matematyce. W końcu, prawdopodobnie za namową Johanna Bernoulliego, ojciec przyjął za pewnik przeznaczenie syna do kontynuowania kariery naukowej, a nie teologicznej.

W wieku 19 lat matematyk Euler odważył się konkurować z największymi naukowcami tamtych czasów, biorąc udział w konkursie na rozwiązanie problemuParyską Akademię Nauk w sprawie optymalnego rozmieszczenia masztów okrętowych. W tym momencie on, który nigdy w życiu nie widział statków, nie zdobył pierwszej nagrody, ale zajął prestiżowe drugie miejsce. Rok później, gdy pojawił się wakat na Wydziale Fizyki Uniwersytetu w Bazylei, Leonard, przy wsparciu swojego mentora Johanna Bernoulliego, postanowił zawalczyć o miejsce, ale przegrał z powodu wieku i braku imponującej listy publikacje. W pewnym sensie miał szczęście, gdyż mógł przyjąć zaproszenie założonej kilka lat wcześniej przez cara Piotra I Akademii Nauk w Petersburgu, gdzie Euler znalazł bardziej obiecującą dziedzinę, która pozwoliła mu na pełny rozwój. Główną rolę w tym odegrał Bernoulli i jego dwaj synowie, Niklaus II i Daniel I, którzy aktywnie tam pracowali.

matematyk euler
matematyk euler

Petersburg (1727-1741): szybki wzrost

Euler spędził zimę 1726 w Bazylei, studiując anatomię i fizjologię, przygotowując się do oczekiwanych obowiązków w akademii. Kiedy przybył do Petersburga i rozpoczął pracę jako adiunkt, stało się oczywiste, że powinien całkowicie poświęcić się naukom matematycznym. Ponadto Euler był zobowiązany do uczestniczenia w egzaminach w korpusie kadetów i doradzania rządowi w różnych kwestiach naukowych i technicznych.

Leonard z łatwością przystosował się do nowych trudnych warunków życia w północnej Europie. W przeciwieństwie do większości innych zagranicznych członków akademii, od razu zaczął uczyć się języka rosyjskiego i szybko go opanował, zarówno w formie pisemnej, jak i ustnej. czasamimieszkał z Danielem Bernoullim i przyjaźnił się z Christianem Goldbachem, stałym sekretarzem akademii, znanym dziś z nierozwiązanego jeszcze problemu, zgodnie z którym każdą liczbę parzystą, zaczynając od 4, można przedstawić przez sumę dwóch liczb pierwszych. Obszerna korespondencja między nimi jest ważnym źródłem dla historii nauki w XVIII wieku.

Leonhard Euler, którego osiągnięcia w matematyce natychmiast przyniosły mu światową sławę i podniosły jego status, spędził najbardziej owocne lata w akademii.

W styczniu 1734 ożenił się z Kathariną Gsel, córką szwajcarskiego malarza, który nauczał u Eulera, i przeprowadzili się do własnego domu. W małżeństwie urodziło się 13 dzieci, z których jednak tylko 5 osiągnęło pełnoletność. Pierworodny, Johann Albrecht, również został matematykiem, a później pomagał ojcu w jego pracy.

Euler nie został oszczędzony przeciwnościom losu. W 1735 ciężko zachorował i prawie umarł. Ku wielkiej uldze wszystkich wyzdrowiał, ale trzy lata później ponownie zachorował. Tym razem choroba kosztowała go prawe oko, co widać na wszystkich portretach naukowca od tamtego czasu.

Niestabilność polityczna w Rosji po śmierci carycy Anny Iwanowny zmusiła Eulera do opuszczenia Petersburga. Ponadto otrzymał zaproszenie od króla pruskiego Fryderyka II do Berlina i pomocy w tworzeniu tam akademii nauk.

W czerwcu 1741 r. Leonard wraz z żoną Kathariną, 6-letnim Johannem Albrechtem i rocznym Karlem wyjechali z Petersburga do Berlina.

wielki matematyk leonhard euler
wielki matematyk leonhard euler

Praca w Berlinie (1741-1766)

Kampania wojenna na Śląsku odrzuciła plany Fryderyka II dotyczące utworzenia akademii. Dopiero w 1746 został ostatecznie uformowany. Pierre-Louis Moreau de Maupertuis został prezesem, a Euler objął stanowisko dyrektora wydziału matematyki. Ale wcześniej nie pozostawał bezczynny. Leonard napisał około 20 artykułów naukowych, 5 głównych traktatów i napisał ponad 200 listów.

Pomimo tego, że Euler wykonywał wiele obowiązków - odpowiadał za obserwatorium i ogrody botaniczne, rozwiązywał kwestie kadrowe i finansowe, zajmował się sprzedażą almanachów, które stanowiły główne źródło dochodów akademii, a nie by wspomnieć o różnych projektach technologicznych i inżynierskich, jego wyniki matematyczne nie zaszkodziły.

Ponadto nie dał się zbytnio rozproszyć skandalem dotyczącym prymatu odkrycia zasady najmniejszego działania, która wybuchła na początku lat 50. XVIII wieku, o którą twierdził Maupertuis, co zostało zakwestionowane przez szwajcarskiego naukowca i nowo wybrany akademik Johann Samuel Koenig, który wspomniał o swojej wzmiance przez Leibniza w liście do matematyka Jacoba Hermanna. Koenig był bliski oskarżenia Maupertuis o plagiat. Poproszony o przedstawienie listu, nie był w stanie tego zrobić, a Euler został wyznaczony do zbadania sprawy. Nie sympatyzując z filozofią Leibniza, stanął po stronie prezydenta i oskarżył Koeniga o oszustwo. Punkt wrzenia osiągnął, gdy Voltaire, który stanął po stronie Koeniga, napisał uwłaczającą satyrę, która wyśmiewała Maupertuisa i nie oszczędzała Eulera. Prezydent był tak zdenerwowany, że wkrótce opuścił Berlin, a Euler musiał de facto zarządzać biznesemprowadzenie akademii.

wielki matematyk Euler
wielki matematyk Euler

Rodzina naukowca

Leonard stał się tak bogaty, że kupił dwór w Charlottenburgu, zachodnim przedmieściu Berlina, wystarczająco duży, by zapewnić wygodne mieszkanie dla swojej owdowiałej matki, którą sprowadził do Berlina w 1750 roku, jego przyrodniej siostry i wszystkich dzieci.

W 1754 roku jego pierworodny Johann Albrecht, na polecenie Maupertuisa w wieku 20 lat, został również wybrany członkiem Akademii Berlińskiej. W 1762 roku jego praca nad zaburzeniami orbit komet przez przyciąganie planet otrzymała nagrodę Akademii Petersburskiej, którą dzielił z Alexis-Claude Clairaut. Drugi syn Eulera, Karl, studiował medycynę w Halle, a trzeci, Christoph, został oficerem. Jego córka Charlotte wyszła za holenderską arystokratkę, a jej starsza siostra Helena poślubiła rosyjskiego oficera w 1777 roku.

Sztuczki króla

Relacje naukowca z Fryderykiem II nie były łatwe. Wynikało to częściowo z zauważalnej różnicy w skłonnościach osobistych i filozoficznych: Fryderyk jest dumnym, pewnym siebie, eleganckim i dowcipnym rozmówcą, sympatyzującym z francuskim oświeceniem; matematyk Euler jest skromnym, niepozornym, przyziemnym i pobożnym protestantem. Innym, być może ważniejszym powodem była niechęć Leonarda, że nigdy nie zaproponowano mu przewodnictwa w Akademii Berlińskiej. Ta niechęć nasiliła się dopiero po odejściu Maupertuisa i starań Eulera o utrzymanie instytucji na powierzchni, kiedy Fryderyk próbował zainteresować Jeana Léron d'Alembert na prezydenta. Ten ostatni faktycznie przyjechał do Berlina, ale tylko po to, by poinformować króla o jego…brak zainteresowania i polecam Leonarda. Frederick nie tylko zignorował radę d'Alemberta, ale wyzywająco ogłosił się szefem akademii. To, wraz z wieloma innymi odmowami króla, ostatecznie spowodowało, że biografia matematyka Eulera ponownie przybrała ostry obrót.

W 1766, pomimo przeszkód ze strony monarchy, opuścił Berlin. Leonard przyjął zaproszenie cesarzowej Katarzyny II do powrotu do Petersburga, gdzie ponownie został uroczyście powitany.

Leonhard Euler i jego wkład w matematykę
Leonhard Euler i jego wkład w matematykę

Petersburg ponownie (1766-1783)

Wysoce szanowany w akademii i uwielbiany na dworze Katarzyny, wielki matematyk Euler zajmował niezwykle prestiżowe stanowisko i dzierżył wpływy, których tak długo mu odmawiano w Berlinie. W rzeczywistości grał rolę przywódcy duchowego, jeśli nie szefa akademii. Niestety jego stan zdrowia nie był już tak dobry. Zaćma lewego oka, która zaczęła go dokuczać w Berlinie, stawała się coraz bardziej poważna iw 1771 Euler zdecydował się na operację. Jej konsekwencją było powstanie ropnia, który prawie całkowicie zniszczył wzrok.

Później tego samego roku, podczas wielkiego pożaru w Petersburgu, jego drewniany dom stanął w płomieniach, a prawie niewidomy Euler zdołał nie zostać spalony żywcem tylko dzięki bohaterskiej pomocy Petera Grimma, rzemieślników z Bazylei. Aby złagodzić nieszczęście, cesarzowa przeznaczyła środki na budowę nowego domu.

Kolejny ciężki cios zadał Eulerowi w 1773 roku, kiedy zmarła jego żona. Po 3 latach nie polegać na nichdzieci, ożenił się po raz drugi z jej przyrodnią siostrą Salome-Avigą Gzel (1723-1794).

Pomimo tych wszystkich brzemiennych w skutki wydarzeń, matematyk L. Euler pozostał oddany nauce. Rzeczywiście, około połowa jego prac została opublikowana lub powstała w Petersburgu. Wśród nich są dwa jego "bestsellery" - "Listy do niemieckiej księżniczki" i "Algebra". Oczywiście nie byłby w stanie tego zrobić bez dobrej sekretarki i pomocy technicznej, której udzielał mu m.in. Niklaus Fuss, rodak z Bazylei i przyszły mąż wnuczki Eulera. Jego syn Johann Albrecht również brał czynny udział w tym procesie. Ten ostatni pełnił również funkcję stenografa sesji akademii, której naukowiec, jako najstarszy pełnoprawny członek, miał przewodniczyć.

Śmierć

Wielki matematyk Leonhard Euler zmarł na udar 18 września 1783 roku podczas zabawy z wnukiem. W dniu jego śmierci na dwóch z jego dużych tabliczek znaleziono wzory opisujące lot balonem wykonany 5 czerwca 1783 r. w Paryżu przez braci Montgolfier. Pomysł opracował i przygotował do publikacji jego syn Johann. Był to ostatni artykuł naukowca, opublikowany w 1784. tomie Memoires. Leonhard Euler i jego wkład w matematykę były tak wielkie, że strumień artykułów czekających na swoją kolej w publikacjach naukowych publikowano jeszcze przez 50 lat po śmierci naukowca.

Działalność naukowa w Bazylei

W krótkim okresie Bazylei wkład Eulera w matematykę obejmował prace nad krzywymi izochronicznymi i odwrotnymi, a także pracę o nagrodę Akademii Paryskiej. Ale główna pracana tym etapie stała się Dissertatio Physica de sono, złożona na poparcie jego nominacji na katedrę fizyki na Uniwersytecie w Bazylei, w sprawie natury i propagacji dźwięku, w szczególności prędkości dźwięku i jego generowania przez instrumenty muzyczne.

Krótka biografia matematyka Eulera
Krótka biografia matematyka Eulera

Pierwszy okres petersburski

Pomimo problemów zdrowotnych, jakich doświadczył Euler, osiągnięcia naukowca w dziedzinie matematyki nie mogą nie budzić niespodzianek. W tym czasie, oprócz swoich głównych prac z zakresu mechaniki, teorii muzyki i architektury morskiej, napisał 70 artykułów na różne tematy, od analizy matematycznej i teorii liczb po konkretne problemy w fizyce, mechanice i astronomii.

Dwutomowa „Mechanika” była początkiem dalekosiężnego planu kompleksowego przeglądu wszystkich aspektów mechaniki, w tym mechaniki ciał sztywnych, elastycznych i elastycznych, a także płynów i mechaniki nieba.

Jak widać z notatników Eulera, w Bazylei dużo myślał o muzyce i kompozycji muzycznej i planował napisać książkę. Plany te dojrzewały w Petersburgu i dały początek Tentamenowi, opublikowanemu w 1739 roku. Praca rozpoczyna się od omówienia natury dźwięku jako wibracji cząsteczek powietrza, w tym jego propagacji, fizjologii percepcji słuchowej oraz generowania dźwięku przez instrumenty smyczkowe i dęte.

Rdzeniem pracy była teoria przyjemności powodowanej przez muzykę, którą Euler stworzył przez przypisanie wartości liczbowych, stopni do interwału tonu, akordu lub ich sekwencji, które składają się na „przyjemność” tego musicalu konstrukcja: niżim niższy stopień, tym większa przyjemność. Praca wykonana jest w kontekście ulubionego przez autora diatonicznego temperamentu chromatycznego, ale też podana jest kompletna matematyczna teoria temperamentów (zarówno starożytnych, jak i współczesnych). Euler nie był jedynym, który próbował przekształcić muzykę w naukę ścisłą: Kartezjusz i Mersenne zrobili to samo przed nim, podobnie jak d'Alembert i wielu innych po nim.

Dwutomowa Scientia Navalis jest drugim etapem jego rozwoju racjonalnej mechaniki. Książka przedstawia zasady hydrostatyki oraz rozwija teorię równowagi i drgań trójwymiarowych ciał zanurzonych w wodzie. Praca zawiera początki mechaniki ciała stałego, która później wykrystalizowała się w Theoria Motus corporum solidorum seu fixedorum, trzecim głównym traktacie o mechanice. W tomie drugim teoria ma zastosowanie do statków, budowy statków i nawigacji.

To niewiarygodne, że Leonhard Euler, którego osiągnięcia w matematyce w tym okresie były imponujące, miał czas i energię, aby napisać 300-stronicową pracę z podstaw arytmetyki do użytku w gimnazjach w Petersburgu. Jak szczęśliwe były te dzieci, które były uczone przez wielkiego naukowca!

Matematyk Euler
Matematyk Euler

Berlin działa

Oprócz 280 artykułów, z których wiele było bardzo ważnych, matematyk Leonhard Euler napisał w tym okresie szereg przełomowych rozpraw naukowych.

Problem brachistochrony - znalezienie drogi, wzdłuż której masa punktowa porusza się pod wpływem grawitacji z jednego punktu w płaszczyźnie pionowej do drugiego w możliwie najkrótszym czasie - jest wczesnym przykładem problemu stworzonego przez Johanna Bernoulliego, wedługwyszukaj funkcję (lub krzywą), która optymalizuje wyrażenie analityczne zależne od tej funkcji. W 1744 i ponownie w 1766 Euler znacznie uogólnił ten problem, tworząc zupełnie nową gałąź matematyki - "rachunek wariacyjny".

Dwa mniejsze traktaty o trajektoriach planet i komet oraz o optyce pojawiły się około 1744 i 1746 roku. Ta ostatnia ma znaczenie historyczne, ponieważ zapoczątkowała dyskusję na temat cząstek newtonowskich i falowej teorii światła Eulera.

W szacunku dla swojego pracodawcy, króla Fryderyka II, Leonard przetłumaczył ważną pracę na temat balistyki autorstwa Anglika Benjamina Robinsa, chociaż niesłusznie skrytykował on swoją Mechanikę z 1736 roku. Dodał jednak tak wiele komentarzy, objaśnień i poprawek, dzięki czemu książka „Artyleria” (1745) była 5 razy większa od oryginału.

W dwutomowym Wstępie do analizy nieskończoności (1748) matematyk Euler pozycjonuje analizę jako niezależną dyscyplinę, podsumowując swoje liczne odkrycia w dziedzinie szeregów nieskończonych, produktów nieskończonych i ułamków ciągłych. Rozwija jasną koncepcję funkcji wartości rzeczywistych i złożonych oraz podkreśla fundamentalną rolę w analizie liczby e, funkcji wykładniczych i logarytmicznych. Drugi tom poświęcony jest geometrii analitycznej: teorii krzywych i powierzchni algebraicznych.

"Rachunek różniczkowy" również składa się z dwóch części, z których pierwsza poświęcona jest rachunku różnic i różnic, a druga - teorii szeregów potęgowych i formułom sumującym z wieloma przykładami. Tutaj, przy okazji,zawiera pierwszą wydrukowaną serię Fouriera.

W trzytomowym „Rachunku całkowym” matematyk Euler rozważa kwadratury (tj. nieskończone iteracje) funkcji elementarnych i techniki sprowadzania do nich liniowych równań różniczkowych, szczegółowo opisuje teorię różniczkowania liniowego drugiego rzędu równania.

Przez lata w Berlinie i później Leonard zajmował się optyką geometryczną. Jego artykuły i książki na ten temat, w tym monumentalna trzytomowa Dioptria, złożyły się na siedem tomów Opera Omnia. Głównym tematem tej pracy było udoskonalenie instrumentów optycznych, takich jak teleskopy i mikroskopy, sposoby eliminowania aberracji chromatycznych i sferycznych poprzez złożony system soczewek i płynów wypełniających.

osiągnięcia Eulera w matematyce
osiągnięcia Eulera w matematyce

Euler (matematyk): ciekawostki z drugiego okresu petersburskiego

Był to najbardziej produktywny czas, w którym naukowiec opublikował ponad 400 artykułów na wspomniane już tematy, a także z geometrii, prawdopodobieństwa i statystyki, kartografii, a nawet funduszy emerytalnych dla wdów i rolnictwa. Spośród nich można wyróżnić trzy traktaty dotyczące algebry, teorii księżyca i nauki o marynarce, a także teorii liczb, filozofii przyrody i dioptrii.

Tu pojawił się kolejny z jego "bestsellerów" - "Algebra". Nazwisko matematyka Eulera ozdobiło tę 500-stronicową pracę, która została napisana z myślą o nauczeniu tej dyscypliny absolutnie początkującego. Młodemu praktykantowi, którego przywiózł ze sobą z Berlina, podyktował książkę, a gdy praca została ukończona,rozumiał i potrafił z łatwością rozwiązywać zadane mu problemy algebraiczne.

„Druga teoria sądów” była również przeznaczona dla osób nie posiadających wiedzy matematycznej, czyli marynarzy. Nic dziwnego, że dzięki niezwykłym umiejętnościom dydaktycznym autora praca była bardzo udana. Minister marynarki wojennej i finansów Francji, Anne-Robert Turgot, zaproponowała królowi Ludwikowi XVI, aby wszyscy uczniowie szkół marynarki wojennej i artylerii byli zobowiązani do studiowania traktatu Eulera. Jest bardzo prawdopodobne, że jednym z tych uczniów był Napoleon Bonaparte. Król zapłacił nawet matematykowi 1000 rubli za przywilej ponownego wydania dzieła, a cesarzowa Katarzyna II, nie chcąc ustąpić królowi, podwoiła kwotę, a wielki matematyk Leonhard Euler otrzymał dodatkowe 2000 rubli!

Zalecana: